Deep Architectures and Ensembles for Semantic Video Classification
نویسندگان
چکیده
منابع مشابه
Deep Learning Architectures for Hard Character Classification
Recent research indicates that deep learning has achieved noticeably promising results in a wide range of areas such as computer vision, speech recognition and natural language processing. This paper offers an empirical study on the use of deep learning techniques for hard characters recognition on the notMNIST dataset. The MNIST dataset has been widely used for training and testing in the fiel...
متن کاملDeep vs. Diverse Architectures for Classification Problems
This study compares various superlearner and deep learning architectures (machinelearning-based and neural-network-based) for classification problems across several simulated and industrial datasets to assess performance and computational efficiency, as both methods have nice theoretical convergence properties. Superlearner formulations outperform other methods at small to moderate sample sizes...
متن کاملDeep Neural Network Architectures for Modulation Classification
In this work, we investigate the value of employing deep learning for the task of wireless signal modulation recognition. Recently in [1], a framework has been introduced by generating a dataset using GNU radio that mimics the imperfections in a real wireless channel, and uses 11 different modulation types. Further, a convolutional neural network (CNN) architecture was developed and shown to de...
متن کاملDeep Learning for Video Classification and Captioning
Accelerated by the tremendous increase in Internet bandwidth and storage space, video data has been generated, published and spread explosively, becoming an indispensable part of today's big data. In this paper, we focus on reviewing two lines of research aiming to stimulate the comprehension of videos with deep learning: video classification and video captioning. While video classification con...
متن کاملDeep Learning for Semantic Video Understanding
ive Summarization ABS (Baseline) 0.024 ABS (with word embedding) 0.027 ABS (with increased encoder size) 0.029 ABS (with increased contextual window) 0.019 ABS (with more hidden layers) 0.014
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Circuits and Systems for Video Technology
سال: 2019
ISSN: 1051-8215,1558-2205
DOI: 10.1109/tcsvt.2018.2881842